

2008 Marking Scheme

Grade	Mark Re	equired	° condidatos cohievino onodo
Awarded	(/ ₁₂₅)	%	% canalates achieving grade
A	86+	69%	23.9%
В	71+	57%	25.7%
С	56+	45%	25.8%
D	48+	38%	11.4%
No award	<48	< 38%	13.3%

Section:	Multiple Choice		Extended A	Answer	Investiga	tion
Average Mark:	26.8	/40	28.1	/60	15.3	/25

20	08 /	Adv	Higher Chemistry Marking Scheme
MC Qu	Answer	% Pupils Correct	Reasoning
1	D	37	1s ² 2s ² 2p ⁶ 3s ² 3p ¹ = 13 electrons \therefore Aluminium atom Atoms in group 3 form ions with a +3 charge
2	D	69	 A all electrons are in ground state and are not excited B d-orbitals start in the 3rd shell (i.e. there is no 1d or 2d orbitals) C Electron dropping from 4s to 3s releases energy (of a particular wavelength) O Outer electron in 4s is easier to removed than outer electron in 3s
3	В	74	A B C D Co ³⁺ F F H H 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁶ H H F F Metals rarely form covalent bonds trigonal pyramidal trigonal trigonal
4	С	83	SemiconductorDoped WithDescriptionp-typeGroup 3 elementPositive hole can migrate across semiconductorn-typeGroup 5 element5th electron can migrate across semiconductor
5	В	75	 A NaCl has 6:6 co-ordination as ions have a similar size B CsCl has 8:8 co-ordination as caesium ion is much larger than chloride ion C NaCl has 6:6 co-ordination as ions have a similar size C ScCl has 8:8 co-ordination as caesium ion is much larger than chloride ion
6	A	85	 ☑A The ionic crystal structure (e.g. 6:6 co-ordination) is dependent in the radii of the ions ☑B The colour of a transition metal ion depends on different d→d transitions ☑C Mn²⁺, Fe²⁺ and Co²⁺ ions have different atomic numbers so different nuclear charge ☑D Mn²⁺, Fe²⁺ and Co²⁺ ions have different numbers of d-electrons
7	D	75	■ A sodium hydride in water forms alkali: NaH + $H_2O \rightarrow NaOH + H_2$ ■ B magnesium hydride in water forms alkali: MgH ₂ + 2H ₂ O \rightarrow Mg(OH) ₂ + 2H ₂ ■ C silicon hydride (monosilane) hydrolyses in water: SiH ₄ + H ₂ O \rightarrow SiO ₂ + 4H ₂ ■ D sulphur hydride (H ₂ S) is a weak acid when dissolved in water: H ₂ S \rightarrow H ⁺ + HS ⁻
8	С	58	EA a base donates a pair of electrons to form a covalent bond B an acid accepts a pair of electrons to form a covalent bond C H ⁻ ion is powerful reducing agent as H ⁻ ions are oxidised themselves (H ⁻ \rightarrow H + e ⁻) D H ⁻ ion is not an oxidising agent as H ⁻ ions are oxidised themselves (H ⁻ \rightarrow H + e ⁻)
9	A	70	Element Oxide Reasoning X Amphoteric oxide Elements in Amphoteric oxides are found in the middle of the Periodic Table Y Basic oxide Elements in basic oxide are metallic and found on left of Periodic Table Z Acidic oxide Elements in acidic oxide are non-metallic and found on right of Periodic Table
10	С	74	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
11	В	53	SpeciesElectron Arrangement3d orbitalNi $1s^22s^22p^63s^23p^63d^84s^2$ $\uparrow\downarrow\uparrow\uparrow\downarrow\uparrow\downarrow\uparrow\uparrow$ Ni^{2+} $1s^22s^22p^63s^23p^63d^8$ $\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow$

Γ

			🗷 A Positive S° values indicate an increase in disorder but there is not enough							
			information in the question to determine whether this is the case.							
			⊠B If the equilibrium constant is well above 1 then the reaction must be feasible							
12		43	and the ΔG° value must be negative for the reaction to be feasible							
16	U	ΤJ	EC Catalyst do not alter the value of the equilibrium constant are the							
			concentrations of reactant and products are unchanged							
			$oxtime{}$ D In a system at equilibrium, changing the concentration of a reactant or product							
			does not alter the equilibrium constant							
			A If K=1, then the concentration of reactants and product would be equal (see answer for C)							
13		20	B reactions do not stop at equilibrium (rate of forward reaction = rate of reverse reaction)							
15	U	09	E C The concentrations of reactants and products are constant (not equal) at equilibrium							
			☑D At equilibrium, rate of forward reaction = rate of reverse reaction							
			At 630°C: equilibrium constant =3300 at 850°C: equilibrium constant =21							
14	C	68	 Increase in remperature gives decrease in equilibrium constant (K) decrease in equilibrium constant (K) achieved by less products at equilibrium 							
T		00	 increase in temperature favours the reverse reaction (product yield decreases) 							
			\therefore reverse reaction is endothermic and forward reaction is exothermic							
			no. of mol H ⁺ = volume x concentration = 0.5 litres x 0.022 mol l ⁻¹ = 0.011mol							
15	D	30	n o. of mol OH ⁻ = v olume x c oncentration = 0.5 litres x 0.020 mol l ⁻¹ = 0.010mol							
15	D	59	\therefore n o. of mol H ⁺ left: 0.011 - 0.010 = 0.001mol							
			\therefore [H ⁺] = 0.001mol = 10 ⁻³ \therefore log ₁₀ [H ⁺] = -3 \therefore -log ₁₀ [H ⁺] = 3 \therefore pH=3							
			🗷 A bases are proton acceptors not proton donors							
16	C	78	B bases are proton acceptors not proton donors							
10		10	☑C bases accept protons to become conjugate acids							
			🗷 D bases accept protons to become conjugate acids							
17	Δ	73	B this equation is the reverse of the enthalpy of formation (doubled)							
17	F	/ 5	EC this equation is the reverse of the enthalpy of formation							
			LEID this equation represent the enthalpy of combustion of ammonia NH ₃							
18	Δ	72	Entropy is a measure of the disorder in a substance. The perfect							
10		16	crystal has zero disorder at OK (absolute zero temperature)							
			\mathbb{Z} A 2mol of NO _{2(g)} product is more disordered than 1mol of N ₂ O _{4(g)} reactant							
10	D	25	\blacksquare B 2mol of NH _{3(g)} product is more ordered than 4mol of N _{2(g)} /H _{2(g)} mixture							
17	D	05	$\mathbf{E}C$ CO _{2(g)} makes products much more disordered than CaCO _{3(s)} reactant							
			🗷 D 2mol of gas products is much more disordered than 1mol of gas reactants							
			A The volume of reactant is not a condition for standard electrode potentials							
20	Δ	71	E Conditions for standard electrode potentials include a temperature of 298K							
20	7	/ –	C Conditions for standard electrode potentials include a concentration of 1mol l ⁻¹							
			D Conditions for standard electrode potentials include a pressure of 1atmosphere							
			$X^{2^{+}} + 2e^{-} \rightarrow X \qquad E^{\circ} = -0.23V$							
			$0 \times \mathbf{-1} \qquad X \qquad \rightarrow \qquad X^{2*} + 2e^{-} \qquad E^{\circ} = \mathbf{+0.23V}$							
21	D	70								
	U		Add $Y + 24a^{\dagger}$ $Y^{2\dagger} + 24a$ $E^{0} = +1.02V$							
			$0'+0'$ $\wedge + 2Ag \rightarrow \wedge^{-} + 2Ag = +1.03V$							
			Reduction is Gain of Electrons: $2Ag^{+} + 2e^{-} \rightarrow 2Ag$							
22	D	70	$0_{X-2} \qquad 2A \qquad \rightarrow \qquad 2A \qquad 1^{3+} + 6e^{-} \qquad \mathbf{F}^{\circ} = +1.68 \mathbf{V}$							
22	В	/ Ŏ	$9 \times 3 \qquad 3Cu^{2+} + 6e^- \rightarrow 3Cu \qquad F^\circ = +0.34V$							
			Add							
			$0'+0' 2AI+3Cu^{2+} \rightarrow 2AI^{3+}+3Cu E^{\circ}=+2.02V$							

23	A	75	$\begin{array}{rcl} & \operatorname{Redox} & X & + & 2Y^+ \ \rightarrow & X^{2+} & + & 2Y \\ & \operatorname{Reduction} & 2e^- & + & 2Y^+ \ \rightarrow & & 2Y \\ & \operatorname{Oxidation} & X & \rightarrow & X^{2+} & + & 2e^- \\ & & & & & & & \\ n=2 \text{ as } 2 \text{ mol of electrons are transferred between reduction and oxidation equations} \\ & \Delta G^\circ & = & -n & \times & F & \times & E^\circ \\ & & & = & -2 & \times & 96500 & \times & 1.5 \\ & & & = & -289500 \text{ J mol}^{-1} \\ & & & = & -289.5 \text{ kJ mol}^{-1} \end{array}$
24	A	51	Species Type Reasoning Ethene nucleophile Electrons in C=C bond in ethene are attracted to δ + of Br-Br Br ⁻ nucleophile Negative charge of Br ⁻ is attracted to +ve charge of cyclic ion intermediate
25	С	79	 A volatility and solubility both decrease as chain length increases B volatility decreases as chain length increases C volatility and solubility both decrease as chain length increases D solubility decreases as chain length increases
26	D	70	 A hydrogen bonding lowers the density of ice compared to liquid water. B hydrogen bonding between ethers and water exists but not in pure ethers C hydrogen bonding of the -OH group in methanol raises it boiling point D neither hydrogen and helium have hydrogen bonding between their particles
27	В	73	 ☑A acids have two oxygen atoms per molecule ☑B ethers like CH₃OC₂H₅ do not react with sodium or lithium aluminium hydride ☑C alkanols react with sodium ☑D aldehyde are reduced by lithium aluminium hydride
28	A	67	☑A alcohols are not acidic ∴ pH=7 ☑B carboxylic acids are acidic ∴ pH<7 ☑C phenol is a weak acid ∴ pH<7 ☑D Benzoic acid (a carboxylic acid) is a weak acid ∴ pH<7
29	С	71	 A alcohols are less volatile than ethers due to hydrogen bonding in alcohols B alcohols will give a different IR spectra to ethers as alcohols contain O-H bond C both have the formula C₂H₆O and burn to give CO₂ and H₂O D ethanol oxidises to ethanal/ethanoic acid but ethers do not oxidise in this way
30	С	63	 ☑ A substitution of -CN nitrile group adds a carbon ∴ product has 5 carbons ☑ B -CN group substitutes onto C₂ of butane so product is not straight chain ☑ C -CN group substitutes onto C₂ of butane so 2-methylbutanoic acid is produced ☑ D substitution of -CN nitrile group adds a carbon ∴ product has 5 carbons
31	D	48	$\begin{array}{rcl} \blacksquare & 2C_2H_5OH + 2Na & \longrightarrow 2C_2H_5O^{-}Na^{+} + H_2 \\ \blacksquare & \mathbf{B} & CH_3CHO: \ alkanals \ do \ not \ react \ with \ sodium \\ \blacksquare & \mathbf{C} & 2CH_3COOH + 2Na & \longrightarrow 2CH_3COO^{-}Na^{+} + H_2 \\ \blacksquare & \mathbf{D} & HOCH_2CH_2OH + 2Na \longrightarrow Na^{+}O^{-}CH_2CH_2O^{-}Na^{+} + H_2 \end{array}$
32	В	63	 ☑ A Ester X made from propanoic acid so name ends in propanoate ☑ B Both have formula C4H8O2 and X is made from propanoic acid and Y from ethanol ☑ C Ester Y has formula C4H8O2 but ethyl methanoate has 3 carbons ☑ D Ester X made from propanoic acid so name ends in propanoate
33	D	57	EA Phenol C_6H_5OH is acidic and would not react with hydrochloric acid EB Analine $C_6H_5NH_2$ is alkaline and would not react with sodium hydroxide EC Benzoic acid C_6H_5COOH is acidic and would not react with hydrochloric acid \overrightarrow{D} -NH ₂ group would react with acid and the -COOH group would react with alkali
34	D	65	EA $C_4H_9NH_2$ is a primary amine \therefore hydrogen bonding raises its boiling point EB $C_3H_7NHCH_3$ is a secondary amine \therefore hydrogen bonding raises its boiling point EC $C_2H_5NHC_2H_5$ is a secondary amine \therefore hydrogen bonding raises its boiling point D $C_2H_5N(CH_3)_2$ is a tertiary amine \therefore no hydrogen bonding to raise its boiling point

35	A	71	$\square A \text{ This st}$ $\square B \text{ This s}$ $\square C C_{10}H_{12}$	 ☑A This structure has formula mass of 134, 2x -CH₃ methyl groups and a di-substituted ring ☑B This structure has a tri-substituted benzene ring ☑C C₁₀H₁₂O has a formula mass of 158 						
			LED This s	③D This structure does not have two -CH₃ methyl groups						
26	D	60	A	A Br H Br H Br						
30	В	09	C H OH H C C C C C C C C C C C C C C C C							
37	A	76		$\square A C_2F_4$ is 1,1,2,2-tetrafluoroethene and has no isomers $\square B C_3H_6$ has the isomers propene and cyclopropane $\square C C_3H_7Br$ has the isomers 1-bromopropane and 2-bromopropane $\square D C_2H_4Cl_2$ has the isomers 1-dichloroethane and 1-2-dichloroethane						
			Answer	A	В	С	D			
			Formula	C4H6O2	C ₆ H ₆ O ₂	C ₈ H ₈ O ₂	C ₈ H ₈ O			
			Mass	(4x12)+(6x1)+(2x16) = 86g	(6x12)+(6x1)+(2x16) = 110g	(8x12)+(8x1)+(2x16) = 136g	(8×12)+(8×1)+(1×16) = 120g			
38	C	12	%С	= <u>48</u> 86 ×100 = 55.8%	= <u>72</u> 110 ×100 = 65.5%	$=\frac{96}{136}$ ×100 = 70.6%	= <u>96</u> 120×100 = 80.0%			
			%Н	$=\frac{6}{86}$ ×100 = 7.0%	$=\frac{6}{110}$ ×100 = 5.5%	$=\frac{8}{136}$ ×100 = 5.9%	$=\frac{8}{120}$ ×100 = 6.7%			
			%0	= <u>32</u> 86 ×100 = 37.2%	$=\frac{32}{110}$ ×100 = 29.1%	$=\frac{32}{136}$ x100 = 23.5%	= $\frac{16}{120}$ ×100 = 13.3%			
				Infra Red Peak	1715cm ⁻¹	3300cm ⁻¹				
				Group	C=O in carboxylic aci	d 0-H in carboxylic	acid			
30		50		10 has no 0-fi as i DOH (C2H4O2) does	not have an empir	rical formula of C24	40			
59	U	50	EC CH ₃ CC	OCH_2CH_3 is an est	ter and has no O-H	l bond				
			ØD CH ₃ CH	H2CH2COOH (C4H80	O2) has an empirico	al formula of C2H4() and has C=0 and			
			0-H g	roups within a -CO	OH carboxyl grou	þ				
			⊠A drug l	acks an ionic O ⁻ fo	r ionic interaction	with binding site				
40		28	B drug l	acks -OH group ne	drogen-bond donor	1				
			$\square C O - CH_3$ group on drug accept as a hydrogen bond acceptor							

2008 Adv Higher Chemistry Marking Scheme									
Long Qu	Answer	Reasoning							
1a	Octahedral arrangement (square bipyramidal)	No of electron pairs = $\frac{No. \text{ of outer electrons in central atom} + No. \text{ of bonds} - charge}{2}$ = $\frac{7}{2}$ + 5 - 0 = $\frac{12}{2}$ = $\frac{12}{2}$ = 6 electron pairs \therefore octahedral arrangement of electrons							
1ь	Lone pair of electrons in NF3 pushes bonds in NF3 closer together.	BF3 is Trigonal planar F B F F B B B B B B B B B B B B B							
	of electrons	All pairs of electrons are bonding pairs of electrons and the repulsion will be equal bonding pair to bonding pair repulsion.							
2a	Green	Light transmitted is the colour seen by the human eye Colour Violet Indigo Blue Green Yellow Orange Red Wavelength 450nm							
2b(i)	+3	[CoCl ₂ (NH ₃) ₄] ⁺ Cl ⁻ is a negatively charged ligand and NH ₃ is a neutral ligand If complex is to have 1+ charge then Cobalt central ion must be Co ³⁺ ion							
2b(ii)	Tetraamminedichloridocobalt(III) or Tetramminedichloroidocobalt(III)	Ligand Name Ligand Isolation Central Ion: Charge on metal ion complex Ligands ligand ligand ligand ligand central Ion: Charge: Ligands Neutral ligands ligand Name Positive Complex: Charge of central ion is converted Ligand Name Ligand Name Positive Complex: Charge of central ion is converted H2O aqua Chloride Cl: chlorido Negative Complex: Charge of central ion is converted NH3 ammine Chloride Cl: chlorido Netals end in ATE numerals and put in NH3 Nitrite NO2: nitrito e.g. Cuprate, Ferrate, Cobaltate brackets							
2b(iii)	1s²2s²2p³3s²3p63d6	Co atom has electron arrangement: 1s²2s²2p³3s²3p ⁶ 3d ⁷ 4s² Electrons are removed from the outermost electron shell (4s): Co³+ ion has electron arrangement: 1s²2s²2p³3s²3p ⁶ 3d ⁶							
3а	Excited electron emit energy when they fall back down to lower energy levels	Electrons are promoted to a higher electron energy level by absorbing energy from the flame. These electrons will return to ground state and the energy released is transmitted as light with a particular wavelength.							
3b	Flame not hot enough or Light emitted is not visible to eye	The promotion of electrons to a higher energy level requires the absorption of energy. It is possible that the Bunsen flame is not hot enough to promote electrons. If electrons are promoted in Magnesium, the light emitted might by the ultra- violet or infra-red parts of the EM spectrum and not visible to the human eye							
3с	178.45 kJ mol ⁻¹	$E = \frac{L \times h \times c}{\lambda} = \frac{6.02 \times 10^{23} \text{ mol}^{-1} \times 6.63 \times 10^{-34} \text{ J s} \times 3 \times 10^8 \text{ m s}^{-1}}{671 \times 10^{-9} \text{m}}$ = 178450 J mol ⁻¹ = 178.45 kJ mol ⁻¹							

4a (i)	DNA co-ordinates to same	Nitnessen seendingtog with Distingue at two different sites /hages as							
1000	Lone pairs of	trogen atoms have a lone pair of electrons.							
4 α(ii)	electrons on Nitrogen								
4b	Cl Pt H ₃ N Cl	trans-platin Cl H3N Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl							
5a (i)	-478 kJ mol ⁻¹	$\Delta H^{\circ} = \Sigma \Delta H_{f^{\circ}(products)} - \Sigma \Delta H_{f^{\circ}(reactants)}$ $= (1 \times 0) + (4 \times -286) + (1 \times -1140) - (-1806)$ $= (0 - 1144 - 1140) - (-1806)$ $= (-2284) - (-1806)$ $= -478 \text{ kJ mol}^{-1}$							
5a (ii)	217 J K ⁻¹ mol ⁻¹	$\Delta S^{\circ} = \Sigma S^{\circ}_{(\text{products})} - \Sigma S^{\circ}_{(\text{reactants})}$ $= (1 \times 192) + (4 \times 70) + (1 \times 81) - 336$ $= 192 + 280 + 81 - 336$ $= 553 - 336$ $= 217 \text{ J K}^{-1} \text{ mol}^{-1}$							
5a(iii)	-542.7 kJ mol ⁻¹	$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ = (-478) - 298 × ²¹⁷ / ₁₀₀₀ = (-478) - 64.7 = -542.7 kJ mol ⁻¹							
5b	-570 kJ mol ⁻¹	Enthalpy of Formation:The enthalpy change for the formation of one mole of a substance from its element in their natural state. $2Cr(s) + 1\frac{1}{2}O_{2}(g)$ $Cr_2O_{3}(s) \Delta H^{\circ}$ =-1140 kJ mol ⁻¹ ImolImolEnthalpy of Combustion:The enthalpy change for the complete combustion of one mole of a substance $Cr(s) + \frac{3}{4}O_{2}(g)$ $\frac{1}{2}Cr_2O_{3}(s) \Delta H^{\circ}$ =-570 kJ mol ⁻¹							
6a	0.001025mol	no. of mol thiosulphate = volume × concentration = 0.0205 × 0.10 = 0.00205 mol $2S_2O_3^{2-} + I_2 \longrightarrow 2I^{-} + S_4O_6^{2-}$ 2mol 1mol							
6b	1.025x10 -moi	$\begin{array}{c ccccc} & Introl & Introl \\ \hline 0.00205 \text{mol} & 0.001025 \text{mol} \\ \hline ClO^- + 2I^- + 2H^+ \longrightarrow I_2 + Cl^- + H_2O \\ \hline 1 \text{mol} & 1 \text{mol} \\ \hline 0.001025 \text{mol} & 0.001025 \text{mol} \\ \hline 0.001025 \text{mol} & 0.001025 \text{mol} \\ \hline no. of \text{mol of } ClO^- \text{ ions in } 250 \text{cm}^3 \text{ of solution } = 0.001025 \text{mol} \\ \hline no. of \text{ mol of } ClO^- \text{ ions in } 250 \text{cm}^3 \text{ of solution } = 0.01025 \text{mol} \\ \hline \text{concentration } = \frac{\text{no. of mol}}{\text{volume}} = \frac{0.01025 \text{ mol}}{0.01010000000000000000000000000000000$							
7a	X = 77 kJ mol ⁻¹ Y = 382 kJ mol ⁻¹	Step X: Enthalpy of atomisation for Ca = 178 kJ mol ⁻¹ Step Y: Enthalpy of 1 st Ionisation for Ca = 596 kJ mol ⁻¹							
7b	Enthalpy of lattice formation	Enthalpy of Lattice of Formation: The energy released when 1 mol of a solid ionic substance is formed from its ions in the gaseous state.							
7c	-535.5 kJ mol ⁻¹	$\Delta H = 77 + 77.5 + 382 + (-328) + (-744)$ = -535.5 kJ mol ⁻¹							
8a	Starch solution	Starch solution turns blue/black in the presence of iodine							

		no. of mol thiosulphate = volume × concentration = 0.0188 × 0.025 = 0.00047mol				
8b(i)	0.0235 mol l ⁻¹	$2S_2O_3^{2^-} + I_2 \longrightarrow 2I^- + S_4O_6^{2^-}$ $2mol \qquad 1mol \\ 0.00047mol \qquad 0.000235mol \\ [I_2]_{cyclohexane} = \frac{no. of mol}{volume} = \frac{0.000235 mol}{0.010 \text{ litrage}} = 0.0235 \text{ mol } l^{-1}$				
8b(ii)	0.02625 mol l ⁻¹	no. of mol thiosulphate = volume x concentration = $0.0105 \times 0.050 = 0.000525$ mol $2S_2O_3^{2^-} + I_2 \longrightarrow 2I^- + S_4O_6^{2^-}$ 2mol 1mol 0.000525mol 0.0002625mol $[I_2]_{water} = \frac{no. of mol}{volume} = \frac{0.0002625 \text{ mol}}{0.010 \text{ litres}} = 0.02625 \text{ mol } 1^{-1}$				
8c	0.895	$K = \frac{[I_2]_{cyclohexane}}{[I_2]_{water}} = \frac{0.0235 \text{ mol } l^{-1}}{0.02625 \text{ mol } l^{-1}} = 0.895$				
8d(i)	Decrease in iodine concentration in water layer	As there is a larger volume of cyclohexane, a larger number of moles of iodine will dissolve in the cyclohexane layer. This means there will be a smaller number of moles of iodine left in the water which would decrease the concentration of iodine in the water.				
8d(ii)	No change	Although the concentration of iodine in the water decreases, the concentration of iodine in cyclohexane is also decreases by the same proportion to make no change to the partition coefficient constant $K = \frac{[I_2]cyclohexane}{[I_2]water}$				
9a	$\mathbf{K}_{\alpha} = \frac{[H_{3}O^{+}][F^{-}]}{[HF]}$	$K_{\alpha} = \frac{[H_{3}O^{+}][F^{-}]}{[HF][H_{2}O]} \qquad \begin{array}{c} \text{But } [H_{2}O] = 1\\ \text{as water is also the}\\ \text{solvent} \end{array} \qquad K_{\alpha} = \frac{[H_{3}O^{+}][F^{-}]}{[HF]}$				
9Ь	1.58×10 ⁻⁴	Acid is completely neutralised at $14 \text{cm}^3 \text{ NaOH} \text{ added}$ Half of Acid has been neutralised at $7 \text{cm}^3 \text{ NaOH} \text{ added}$ $\therefore \text{pH} \text{ of solution at } 7 \text{cm}^3 \text{ NaOH} \text{ added} = 3.8 = \text{pK}_a$ $\therefore \text{pK}_a = \text{pH} = 3.8$ $pK_a = -\log_{10} K_a = 3.8$ $\log_{10} K_a = -3.8$ $K_a = 10^{-3.8} = 1.58 \times 10^{-4}$				
9с	F⁻ ions or NaF	Buffers are created when a weak acid/alkali and a salt of a weak acid/alkali are dissolved in water. HF molecules are the weak acid. Neutralised HF forms the salt sodium fluoride Na ⁺ F ⁻ and this is the salt of a weak acid also required to form a buffer.				
9d	Cresol red or alizarin red	At colour change, pH=pK _{In.} Colour change takes place at the steep vertical region of graph (pH=6-9)				
10a	Elimination	Elimination reactions remove a small molecule and leave a C=C double bond behind on the reactant.				
10b(i)	hybridising/mixing of one s and two p orbitals	sp ² hybridisation is the mixing of one s-orbital and two p orbitals to form three sigma (σ) bonds. The remaining p- orbital forms a pi (π) bond found in a C=C double bond				
10b(ii)	Sigma bond have end-on overlap of orbitals Pi bonds have sideways overlap of orbitals	sp ³ hybridisation is the mixing of one s-orbital and all three p- orbitals to form four sigma (σ) bonds. The bonds are linear with the bond in a straight line with the nuclei.				
10c	н н н н н–с–с–с–с–н н н онн	Markovnikov's Rule: hydrogen becomes attached to the carbon atom of the C=C double bond that is already bonded to the greater number of hydrogen atoms				

		E>	xperiment		Change	Effect on Rate	Order of reactant		
10d(i)	and an last		1+2	[1-brom	ombutane] x2	×2	[1-bromobutane] ¹		
	2 nd order		2+3	[(DH⁻] x2	x2	[OH ⁻] ¹		
		:. O	Overall order of Reaction = 1 + 1 = 2						
		Rate	= k × [1-	bromobut	ane]1 × [OH-]1 =	k[1-bromobut	ane][OH ⁻]		
				rate	= k x [1-br	omobutane]×	[OH ⁻]		
				L.	_	rate			
10d(ii)	1.32×10 ⁻⁴ l mol ⁻¹ s ⁻¹			к	=[1-bror	nobutane] x [(ЭН ⁻]		
					3.3	x10 ⁻⁶ mol l ⁻¹ s ⁻	1		
					=0.25 r	nol l ⁻¹ x 0.1 mo	l ⁻¹		
					= 1.32	2x10 ⁻⁴ l mol ⁻¹ s	-1		
10d(iii)	Diagram showing:	нс	0- H	Br C ₃ H	HO····	GBr C3H7 mediate)	H fast HO C H C C H C C H C C C H C C C C C C C C C C C C C		
11a(i)	Sodium (or other group 1 metal)	2C	3H7O	9 H + 2 ol + sodi	Na → um metal	2C ₃ H ₇ O [.] sodium prop	⁻ Na ⁺ + H ₂ ∞xide hydrogen		
		Prop	an-1-ol is	a primary	alcohol which a	oxidises into p	ropanonic acid		
11a(ii)	Acidified dichromate or Hot copper (II) oxide		Oxidisir Oxidisir Acidified I Benedict's Hot copper Tollen's	lation of alkan ig agent Dichromate S/Fehling's (II) oxide Reagent	Image: Constraint of the second arrows of	alcohol y alcohol nyde Start Colour Orange Blue Blue Black (Colourless)	 Aldehyde Ketone Carboxylic acid End Colour Green Brick Red (orange) Brown Silver mirror produced 		
11b	Ethoxypropane or ethylpropylether	H-	H + -C-C H + chloreth	H C-CI-	 ───► H—(C₃H7 ⁻	Η Η C—C—Ο- Η Η ethoxypr	H H H -C-C-C-H H H H +Cl ⁻		
11c	diagram of ethyl propanoate:			Н—	Н Н 	ОНН -CСС- НН	-H		

		<u>Condensation</u> : Two molecules join together with water removed at the join.
12a	condensation	$CH_{3} - C = O + H + O + O + O + O + O + O + O + O +$
12b(i)	recrystallisation	Recrystallisation will increase the purity because the impurities remain in the solvent.
12b(ii)	Use of melting point apparatus to measure melting point and checking with data books	The derivative has a very specific melting point which can be measured accurately in melting point apparatus. Each derivative from an aldehyde or a ketone will melt at a particular temperature which can be looked up in data tables allowing identification of the original aldehyde/ketone
12c(i)	One of these reagents stating propanone gives no colour change but isomer gives stated colour change	Reagent Start Colour End Colour Acidified Dichromate Orange Green Benedict's/Fehling's Blue Brick Red (orange) Hot copper (II) oxide Black Brown Tollen's Reagent (Colourless) Silver mirror produced Acidified Permanganate Purple Colourless
12c(ii)		Chemical Shift Peak must clearly be between 2.0 and 3.0 and not exactly on 3.0 This corresponds to the RCH ₂ C=O grouping with a chemical shift of 2.3-2.8
12c(iii)	A: CH₃⁺ B: CH₃CO⁺	A has mass= 15: CH₃⁺ has mass = (1×12)+(3×1) = 12 + 3 = 15 B has mass= 43: CH₃CO has mass = (2×12)+(3×1)+(1×16) = 24 + 3 + 16 = 43
13a	electrophillic substitution	<u>Electrophillic</u> : only positive charges are attracted to the high electron density of the benzene ring. <u>Substitution</u> : one group on and one group off
13b	Bromine Br2 FeBr3/FeCl3 catalyst	Possible catalysts: FeBr ₃ or FeCl ₃ or AlBr ₃ or AlCl ₃ (Catalyst makes Br ₂ polar and δ + is attracted to delocalised electrons) β^{+} β^{-} Br Br Br Br H H $H^{+}Br^{-}$ $H^{+}Br^{-}$

